22 research outputs found

    Discrete series representations and K multiplicities for U(p,q). User's guide

    Full text link
    This document is a companion for the Maple program : Discrete series and K-types for U(p,q) available on:http://www.math.jussieu.fr/~vergne We explain an algorithm to compute the multiplicities of an irreducible representation of U(p)x U(q) in a discrete series of U(p,q). It is based on Blattner's formula. We recall the general mathematical background to compute Kostant partition functions via multidimensional residues, and we outline our algorithm. We also point out some properties of the piecewise polynomial functions describing multiplicities based on Paradan's results.Comment: 51 page

    Multiple Bernoulli series and volumes of moduli spaces of flat bundles over surfaces

    Get PDF
    Using Szenes formula for multiple Bernoulli series we explain how to compute Witten series associated to classical Lie algebras. Particular instances of these series compute volumes of moduli spaces of flat bundles over surfaces, and also certain multiple zeta values.Comment: 51 pages, 3 figures; formula in Proposition 3.1 for the Lie group of type G_2 is corrected; new references adde

    Horn conditions for Schubert positions of general quiver subrepresentations

    Full text link
    We give inductive conditions that characterize the Schubert positions of subrepresentations of a general quiver representation. Our results generalize Horn's criterion for the intersection of Schubert varieties in Grassmannians and refine Schofield's characterization of the dimension vectors of general subrepresentations. Our proofs are inspired by Schofield's argument as well as Belkale's geometric proof of the saturation conjecture.Comment: 34 pages, contains detailed proofs of results previously announced in arXiv:1804.0043

    Summing a polynomial function over integral points of a polygon. User's guide

    Full text link
    This document is a companion for the Maple program \textbf{Summing a polynomial function over integral points of a polygon}. It contains two parts. First, we see what this programs does. In the second part, we briefly recall the mathematical background

    Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra

    Full text link
    This article concerns the computational problem of counting the lattice points inside convex polytopes, when each point must be counted with a weight associated to it. We describe an efficient algorithm for computing the highest degree coefficients of the weighted Ehrhart quasi-polynomial for a rational simple polytope in varying dimension, when the weights of the lattice points are given by a polynomial function h. Our technique is based on a refinement of an algorithm of A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), pp. 1449--1466] in the unweighted case (i.e., h = 1). In contrast to Barvinok's method, our method is local, obtains an approximation on the level of generating functions, handles the general weighted case, and provides the coefficients in closed form as step polynomials of the dilation. To demonstrate the practicality of our approach we report on computational experiments which show even our simple implementation can compete with state of the art software.Comment: 34 pages, 2 figure

    How to Integrate a Polynomial over a Simplex

    Full text link
    This paper settles the computational complexity of the problem of integrating a polynomial function f over a rational simplex. We prove that the problem is NP-hard for arbitrary polynomials via a generalization of a theorem of Motzkin and Straus. On the other hand, if the polynomial depends only on a fixed number of variables, while its degree and the dimension of the simplex are allowed to vary, we prove that integration can be done in polynomial time. As a consequence, for polynomials of fixed total degree, there is a polynomial time algorithm as well. We conclude the article with extensions to other polytopes, discussion of other available methods and experimental results.Comment: Tables added with new experimental results. References adde

    Coefficients of Sylvester's Denumerant

    Get PDF
    For a given sequence α=[α1,α2,…,αN+1]\mathbf{\alpha} = [\alpha_1,\alpha_2,\dots,\alpha_{N+1}] of N+1N+1 positive integers, we consider the combinatorial function E(α)(t)E(\mathbf{\alpha})(t) that counts the nonnegative integer solutions of the equation α1x1+α2x2+⋯+αNxN+αN+1xN+1=t\alpha_1x_1+\alpha_2 x_2+\cdots+\alpha_{N} x_{N}+\alpha_{N+1}x_{N+1}=t, where the right-hand side tt is a varying nonnegative integer. It is well-known that E(α)(t)E(\mathbf{\alpha})(t) is a quasi-polynomial function in the variable tt of degree NN. In combinatorial number theory this function is known as Sylvester's denumerant. Our main result is a new algorithm that, for every fixed number kk, computes in polynomial time the highest k+1k+1 coefficients of the quasi-polynomial E(α)(t)E(\mathbf{\alpha})(t) as step polynomials of tt (a simpler and more explicit representation). Our algorithm is a consequence of a nice poset structure on the poles of the associated rational generating function for E(α)(t)E(\mathbf{\alpha})(t) and the geometric reinterpretation of some rational generating functions in terms of lattice points in polyhedral cones. Our algorithm also uses Barvinok's fundamental fast decomposition of a polyhedral cone into unimodular cones. This paper also presents a simple algorithm to predict the first non-constant coefficient and concludes with a report of several computational experiments using an implementation of our algorithm in LattE integrale. We compare it with various Maple programs for partial or full computation of the denumerant.Comment: minor revision, 28 page

    INTERMEDIATE SUMS ON POLYHEDRA II:BIDEGREE AND POISSON FORMULA

    Get PDF
    Abstract. We continue our study of intermediate sums over polyhedra,interpolating between integrals and discrete sums, whichwere introduced by A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), 1449–1466]. By well-known decompositions, it is sufficient to considerthe case of affine cones s+c, where s is an arbitrary real vertex andc is a rational polyhedral cone. For a given rational subspace L,we integrate a given polynomial function h over all lattice slicesof the affine cone s + c parallel to the subspace L and sum up theintegrals. We study these intermediate sums by means of the intermediategenerating functions SL(s+c)(ξ), and expose the bidegreestructure in parameters s and ξ, which was implicitly used in thealgorithms in our papers [Computation of the highest coefficients ofweighted Ehrhart quasi-polynomials of rational polyhedra, Found.Comput. Math. 12 (2012), 435–469] and [Intermediate sums onpolyhedra: Computation and real Ehrhart theory, Mathematika 59(2013), 1–22]. The bidegree structure is key to a new proof for theBaldoni–Berline–Vergne approximation theorem for discrete generatingfunctions [Local Euler–Maclaurin expansion of Barvinokvaluations and Ehrhart coefficients of rational polytopes, Contemp.Math. 452 (2008), 15–33], using the Fourier analysis with respectto the parameter s and a continuity argument. Our study alsoenables a forthcoming paper, in which we study intermediate sumsover multi-parameter families of polytopes
    corecore